Université Pierre et marie Curie M2- Equations elliptiques linéaires et non-linéaires

EXAMEN du 15 JANVIER 2008

Durée: 3 heures

Notes de cours autorisées

Le sujet comporte trois exercices indépendants. Les questions délicates sont signalées par *.

Exercice I

Soit Ω un domaine borné et régulier de \mathbb{R}^2 . Pour une fonction f donnée dans $L^2(\Omega)$, on s'intéresse aux solutions de l'équation avec données de Dirichlet homogène

$$-\operatorname{div}((u^{2}+1)\nabla u) = f \operatorname{dans}\Omega,$$

$$u = 0 \operatorname{sur}\partial\Omega.$$
(1)

- A) Vérifier que $H^2(\Omega) \hookrightarrow C^0(\Omega)$, et que si u et v sont deux applications de $H^2(\Omega)$ alors le produit uv est aussi une application de $H^2(\Omega)$.
- B) On considère l'application $\mathcal{T}: H^2(\Omega) \mapsto L^2(\Omega)$ définie par

$$\mathcal{T}(v) = -\operatorname{div}((v^2 + 1)\nabla v).$$

1) Montrer que \mathcal{T} est différentiable, de classe C^1 , et calculer $d\mathcal{T}$. Vérifier en particulier que

$$d\mathcal{T}(0)(v) = -\Delta v.$$

2) Montrer qu'il existe $\delta > 0$, et $\alpha > 0$ tel que si $||f||_{L^2(\Omega)} \leq \delta$, alors il existe une unique application $u = u_f \in H^2 \cap H^1_0(\Omega)$ vérifiant (1) et

$$||u_f||_{H^2(\Omega)} \le \alpha.$$

- 3) Montrer que si de plus $f \ge 0$, alors $u_f \ge 0$.
- C) On suppose dans cette question que le domaine Ω est le disque unité de \mathbb{R}^2 , c'est à dire que

$$\Omega = D^2 = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 < 1\}.$$
(2)

On suppose que f est à symétrie radiale, i.e f(x) ne dépendant que de |x|. Montrer qu'alors le solution u_f trouvée en B2) est à symétrie radiale.

D) pour deux fonctions f et g données dans $L^2(\Omega)$, on cherche un couple de fonction (u, v) dans $H^2 \cap H^1_0(\Omega)$ tel que

$$-\operatorname{div}((v+1)\nabla u) = f, \operatorname{dans}\Omega,$$

$$-\operatorname{div}((u+1)\nabla v) = g, \operatorname{dans}\Omega.$$
(3)

1) Montrer qu'il existe des nombres $\delta_1 > 0$, et $\alpha_1 > 0$ tel que si $||f||_{L^2(\Omega)} + ||g||_{L^2(\Omega)} \le \delta_1$ alors il existe un unique couple d'applications (u, v) dans $H^2 \cap H_0^1(\Omega)$ vérifiant (3) et l'inégalité

$$||u_f||_{H^2(\Omega)} + ||v_f||_{H^2(\Omega)} \le \alpha_1.$$

2) Que peut-on dire si f et g sont à symétrie radiale?

Exercice II

Soit Ω un domaine borné et régulier de \mathbb{R}^2 . On s'interesse dans cet exercice au système d'équations non-linéaires

$$-\Delta u = u^5 + uv^2$$

$$-\Delta v = v^5 + vu^2.$$
(4)

que l'on complète avec des données de Dirichlet homogène au bord du domaine

$$u = v = 0 \operatorname{sur} \partial \Omega$$
.

A) On considère l'espace de Hilbert $H = H_0^1(\Omega)^2$ muni du produit scalaire

$$\langle (u_1, v_1), (u_2, v_2) \rangle_H := \langle u_1, u_2 \rangle_{H_0^1(\Omega)} + \langle v_1, v_2 \rangle_{H_0^1(\Omega)}.$$

1) Montrer que les solutions $(u,v) \in (H_0^1(\Omega))^2$ correspondent aux points critiques de la fonctionnelle F définie sur $H = (H_0^1(\Omega))^2$ par

$$F(u,v) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + |\nabla v|^2) - \frac{1}{6} \int_{\Omega} (u^6 + v^6) - \frac{1}{2} \int_{\Omega} u^2 v^2.$$

2) Montrer que

$$\inf \{ F(u, v), (u, v) \in (H_0^1(\Omega))^2 \} = -\infty.$$

3) Montrer qu'il existe un nombre $\rho > 0$ tel que si $||(u,v)||_H \leq \rho$ alors

$$F(u,v) \ge \frac{1}{4} \|(u,v)^2\|_H.$$

- 4) Déduire des questions précédentes que la fonctionnelle F possède la géométrie du col (i.e existence d'une cuvette et existence d'un point bas).
- B) On s'intéresse dans cette partie aux suites de Palais-Smale pour F.
- 1) Montrer que, si une suite $(u_n, v_n)_{n \in \mathbb{N}}$ d'éléments de H est une suite de Palais-Smale pour

F, alors il existe une suite $(f_n, g_n)_{n \in \mathbb{N}}$ de couples d'éléments de $H^{-1}(\Omega)$ tels que $||f_n||_{H^{-1}} + ||g_n||_{H^{-1}} \to 0$ lorsque $n \to +\infty$ et

$$-\Delta u_n = u_n^5 + u_n v_n^2 + f_n -\Delta v_n = v_n^5 + v_n^2 u_n + g_n.$$
 (5)

2) Montrer qu'il existe une constante C>0 telle que, pour tout couple (u,v) de fonctions de $L^6(\Omega)$

$$\int_{\Omega} u^2 v^2 \le C \left(\int_{\Omega} (u^6 + v^6) \right)^{\frac{2}{3}}.$$

3) En déduire que $\forall \varepsilon > 0$, $\exists A > 0$ tel que si $||u||_{L^6(\Omega)} + ||v||_{L^6(\Omega)} \ge A$ alors

$$\int_{\Omega} u^2 v^2 \le \varepsilon \int_{\Omega} (u^6 + v^6).$$

- 4) En utilisant les questions précédentes montrer que les suite de Palais-Smale sont bornées.
- 5) Montrer que F vérifie la condition de Palais-Smale.
- C) Montrer que le système (4) possède une solution non nulle dans H.
- D) Montrer que de plus, on peut trouver une telle solution telle que $u \ge 0$ et $v \ge 0$.

Exercice III

Pour r > 0 on considère le disque D(r) de \mathbb{R}^2 défini par $D(r) = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 < r\}$, et on pose D = D(1). Soit f une fonction de $L^{\infty}(D)$ et u une fonction de $H^1(D)$ telles que

$$-\Delta u = f \operatorname{sur} D. \tag{6}$$

A 1) Montrer que pour tout réel $1 \le p < +\infty$ il existe une constante $C_p > 0$ telle que

$$||u||_{W^{2,p}(D(\frac{1}{2}))} \le C_p(||f||_{L^{\infty}(D(1))} + ||u||_{L^{\infty}(D(1))}).$$
(7)

Indication: On pourra écrire $u = u_0 + u_1$, où u_1 est l'unique solution de solution de $H_0^1(D(1))$ de $-\Delta u_1 = f$, et écrire l'équation pour u_0 .

2) En déduire qu'il existe une constante universelle $C_0 > 0$ telle que

$$|\nabla u(0)| \le C_0 (||f||_{L^{\infty}(D(1))} + ||u||_{L^{\infty}(D(1))}).$$
(8)

- B) Soit $0 < \lambda < 1$. On considère les fonctions u_{λ} et f_{λ} définies sur le disque $D(\frac{1}{\lambda})$ par $u_{\lambda}(x) = u(\lambda x)$ et $f_{\lambda}(x) = f(\lambda x)$.
- 1) Montrer que $\nabla u_{\lambda}(x) = \lambda \nabla u(\lambda x)$ et $\Delta u_{\lambda}(x) = \lambda^2 \Delta u(\lambda x)$.
- 2) En déduire, en appliquant la partie A) à u_{λ} que pour tout $0 < \lambda < 1$, on a

$$|\nabla u(0)| \le C_0 \left(\lambda ||f||_{L^{\infty}(D(1))} + \frac{1}{\lambda} ||u||_{L^{\infty}(D(1))} \right). \tag{9}$$

3) En déduire, en optimisant le membre de gauche de cette inégalité par rapport à λ que si $\|f\|_{L^{\infty}(D(1))} \ge \|u\|_{L^{\infty}(D(1))}$ alors

$$|\nabla u(0)| \le 2C_0 \sqrt{||f||_{L^{\infty}(D(1))} ||u||_{L^{\infty}(D(1))}}.$$

C (application) Soit $0 < \epsilon < 1$ et v_{ϵ} une solution dans $H^1(D)$ de l'équation

$$-\Delta v_{\epsilon} = \frac{1}{\epsilon^2} (v_{\epsilon} - v_{\epsilon}^3) \, \text{dans } D.$$

On supppose de plus que $|v_{\epsilon}| \leq 1$ sur ∂D .

1) Montrer que

$$||v_{\epsilon}||_{L^{\infty}(D)} \le 1.$$

2) Montrer qu'il existe une constante $C_1>0$ telle que

$$|\nabla v_{\epsilon}(0)| \le \frac{C_1}{\epsilon}.$$

3) Montrer que pour tout x tel que $|x| \leq 1 - \epsilon$, on a

$$|\nabla v_{\epsilon}(x)| \le \frac{C_1}{\epsilon}.$$