Suite récurrente définie par une fonction

Rédigé par un enseignant et un élève de l'Ecole Polytechnique (Vincent Langlet).

Niveau : Approfondir la Terminale S ou Première Année post bac

Difficulté : Exercice classique, simple au début si le cours est su

Durée: 1 heure, un peu plus en soignant la rédaction

Rubrique(s):

Analyse(Suites récurrentes, fonctions)

Exercice 1:

1) Soit $A \in \mathbb{R}$ et f une fonction définie sur \mathbb{R} par $f(x) = x^2 + A$. On note $(u_n)_{n \in \mathbb{N}}$ la suite récurrente définie par

$$u_0 = 0$$
 et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- a) Donner le tableau de variation de f.
- b) Donner le tableau de signe de $x \mapsto f(x) x$ selon la valeur de A par rapport à 1/4.
- c) On dit que l'intervalle I est stable par f si et seulement si $f(I) \subset I$. Montrer que si I est stable par f et $u_0 \in I$, alors pour tout $n \in \mathbb{N}$, $u_n \in I$.
- 2) Dans cette question, on suppose $A \geq 0$.
 - a) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - b) Montrer que si A > 1/4, alors $(u_n)_{n \in \mathbb{N}}$ tend vers $+\infty$.
 - c) Montrer que si $A \in [0, 1/4[$, alors $(u_n)_{n \in \mathbb{N}}$ convergente et donner sa limite.
- 3) On suppose dans cette question que $A \in]-1,0[$.
 - a) Montrer que [A,0] est stable par f.
- b) Montrer que $(u_{2n})_{n\in\mathbb{N}}$ est décroissante et converge vers a tel que $f\circ f(a)=a$. Montrer que $(u_{2n+1})_{n\in\mathbb{N}}$ est croissante et converge vers b tel que $f\circ f(b)=b$.
 - c) Montrer que pour tout $x \in \mathbb{R}$, $f \circ f(x) x = (x^2 x + A)(x^2 + x + A + 1)$.
- d) Montrer que si $A \in]-3/4, 0[$, alors $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
 - e) Montrer que si $A \in]-1, -3/4[$, alors $(u_n)_{n \in \mathbb{N}}$ diverge.

Indications et Commentaires : 2.c) On utilisera un intervalle stable par f.

3.e) On montrera que la suite $(u_{2n})_{n\in\mathbb{N}}$ ne converge pas vers la même limite que la suite $(u_{2n+1})_{n\in\mathbb{N}}$.

Corrections.

1.a) Pour tout x réel, nous définissons $f(x) = x^2 + A$ avec A réel. La dérivée de la fonction f vaut, pour tout x réel, f'(x) = 2x. Le tableau de variation de la fonction f est donc,

x	$-\infty$		0		$+\infty$
f'(x)		_	0	+	
	$+\infty$				$+\infty$
f(x)		\		7	
			A		

1.b) Définissons pour tout réel x, la fonction g, g(x) = f(x) - x. Sa dérivée vérifie :

$$\forall x \in \mathbb{R}, \ g'(x) = f'(x) - 1 = 2x - 1.$$

Le tableau de variations de g est donc le suivant :

x	$-\infty$		1/2		$+\infty$
g'(x)		_	0	+	
	$+\infty$				$+\infty$
g(x)		\		7	
			A - 1/4		

Si A > 1/4, d'après le tableau de variations ci-dessus, pour tout x réel, f(x) - x > 0.

Si A = 1/4, alors pour tout x réel, $f(x) - x \ge 0$.

Si A < 1/4, alors le tableau de variations de g est de la forme,

:	x	$-\infty$		α	1/2		β		$+\infty$
g'	(x)			_	0		+		
		$+\infty$							$+\infty$
			\					7	
$\mid g($	(x)			0			0		
						7			
					A - 1/4 < 0				

Déterminons α et β , puisque ces deux valeurs joueront un rôle important par la suite. Ce sont les racines du polynôme $P=X^2-X+A$, si A<1/4. On obtient donc :

$$\alpha = \frac{1 - \sqrt{1 - 4A}}{2} \text{ et } \beta = \frac{1 + \sqrt{1 - 4A}}{2}.$$

1.c) On démontre ceci, par récurrence. Pour tout entier naturel n, posons \mathcal{P}_n : " $u_n \in I$ ". Initialisation: $u_0 \in I$, par hypothèse. Donc \mathcal{P}_0 est vraie.

Hérédité : Supposons \mathcal{P}_n vraie pour un certain entier naturel $n \geq 0$, montrons \mathcal{P}_{n+1} .

Par hypothèse de récurrence, nous avons $u_n \in I$. Comme $u_{n+1} = f(u_n)$ et I est stable par f, alors $u_{n+1} \in I$. Nous en déduisons que \mathcal{P}_{n+1} vraie. On conclut par récurrence.

2.a) Si A > 1/4, la suite $(u_n)_{n \in \mathbb{N}}$ est croissante car, d'après le tableau de signe de la question 1.b),

$$\forall n \in \mathbb{N}, \ u_{n+1} - u_n = f(u_n) - u_n \ge 0.$$

Si $A \in [0, 1/4[, I = [0, \alpha]$ est un intervalle stable par f car f est croissante sur I donc

$$f(I) = [f(0), f(\alpha)] = [0, \alpha] = I$$
 et en particulier $f(I) \subset I$.

Comme $A \leq \alpha$, par la question 1.c), on a donc pour tout entier naturel n non nul, $u_n \leq \alpha$. Ainsi la suite $(u_n)_{n \in \mathbb{N}}$ est également croissante car, d'après le tableau de signe de la question 1.b),

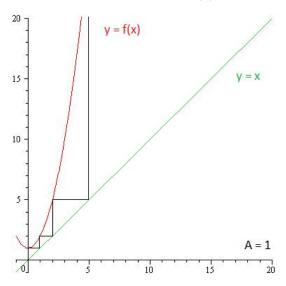
$$\forall n \ge 1, \ u_{n+1} - u_n = f(u_n) - u_n \ge 0.$$

2.b) Supposons que u_n tende vers une limite l. Alors f(l) = l puisque f continue. Détaillons le cette fois ci : $u_{n+1} = f(u_n) \to l$ par continuité de f en l.Pr $u_{n+1} \to l$ et par unicité de la limite :

$$f(l) = l$$
, c'est à dire $l = l^2 + A$.

Or le polynôme $P = X^2 - X - A$ n'a pas de racine, puisque son discriminant, si A > 1/4, est $\Delta = 1 - 4A < 0$. Absurde et la suite ne converge pas. La suite $(u_n)_{n \in \mathbb{N}}$ croissante et elle ne ne converge pas, donc elle tend vers l'infini.

Nous pouvons tracer la suite dans le cas A=1 par exemple. Nous rappelons que le tracé d'une suite récurrente $u_{n+1}=f(u_n)$ se fait en tracant f et la première bissetrice y=x. Comme ca on part de u_0 en abscisse et on obtient u_1 en prenant l'image par f. On reporte alors u_1 sur l'axe des abscisses en utilisant la première bissectice et on recommence ... On obtient cet escalier dont les abscisses successives des points de contact avec y=f(x) sont les valeurs $u_0,u_1,u_2...$



2.c) Si $A \in [0, 1/4[$, le polynôme $P = X^2 - X - A$ a deux racines α et β . Remarquons que $A \leq \alpha$. Considérons l'intervalle $I = [0, \alpha]$. I est un intervalle stable par f, donc par la 1.c), pour tout entier naturel n, $u_n \in I$. $(u_n)_{n \in \mathbb{N}}$ est croissante majorée, donc converge vers une limite l, vérifiant l = f(l). Dans l'intervalle I, il existe une unique solution vérifiant l = f(l), donc $l = \alpha$.



3.a) f est décroissante sur [A,0], d'où $f([A,0]) \subset [f(0),f(A)] \subset [A,A^2+A]$. Or sur]-1,0[, considérons la fonction $h:x \longmapsto x^2+x$, alors h'(x)=2x+1. Le tableau de variation de h est :

x	-1		-1/2		0
h'(x)		_	0	+	
	0				0
h(x)		\		7	
			-1/4		

Nous en déduisons que $\forall A \in]-1,0[,\ -1/4 \leq A^2+A \leq 0.$ d'où $f([A,0]) \subset [A,0].$

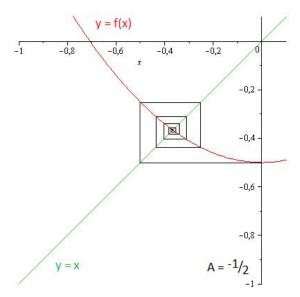
3.b) Comme $f \circ f$ est la composée de deux fonctions décroissantes, elle est croissante. La suite récurrente $(u_{2n})_{n \in \mathbb{N}}$ est donc monotone. C'est une récurrence qui repose sur le fait que pour tout entier naturel $n \geq 2$, $u_{2n+2} - u_{2n} = f \circ f(u_{2n}) - f \circ f(u_{2n-2})$ est de même signe que $u_{2n} - u_{2n-2}$ puisque $f \circ f$ est croissante. Puis, on démontre par récurrence que $u_{2n+2} - u_{2n}$ a le même signe que $u_2 - u_0 = f(A) - 0 \leq 0$. Donc, $(u_{2n})_{n \in \mathbb{N}}$ est décroissante. Comme $(u_{2n})_{n \in \mathbb{N}}$ est décroissante minorée, elle converge vers a. $f \circ f$ étant continue, sa limite vérifie $f \circ f(a) = a$. De même, $(u_{2n+1})_{n \in \mathbb{N}}$ converge vers b tel que $f \circ f(b) = b$.

3.c) Comme
$$(x^2 - x + A)(x^2 + x + A + 1) = x^4 + 2Ax^2 + A^2 - x + A$$
, on a :

$$\forall x \in \mathbb{R}, \ f \circ f(x) - x = (x^2 + A)^2 - x + A$$
$$= x^4 + 2Ax^2 + A^2 - x + A$$
$$= (x^2 - x + A)(x^2 + x + A + 1).$$

3.d) Si $A \in]-3/4,0[$, il n'y a qu'une seule racine β sur [A,0] car : $P=X^2-X+A$ a deux racines $\alpha=\frac{1+\sqrt{1-4A}}{2}>0$ et $\beta=\frac{1-\sqrt{1-4A}}{2}<0$. $Q=X^2+X+A+1$, de discriminant $\Delta=-3-4A$ négatif, est de signe constant positif.

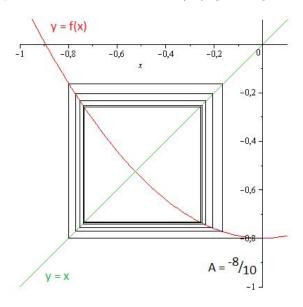
Comme $u_0 = 0$ et $[\beta, 0]$ est un intervalle stable par $f \circ f$, $(u_{2n})_{n \in \mathbb{N}}$ décroissante, minorée, converge vers β . Comme $u_1 = A < \beta$, et $[A, \beta]$ est un intervalle stable par $f \circ f$, $(u_{2n+1})_{n \in \mathbb{N}}$ croissante, majorée, converge vers β . Les suites extraites, paire et impaire, convergent vers la même limite, donc $(u_n)_{n \in \mathbb{N}}$ converge vers β .



3.e) Si $A \in]-1,-3/4[$, il y a trois racines possibles de $f \circ f(x)-x$ sur [A,0] car : $P=X^2-X+A$ a deux racines $\alpha=\frac{1+\sqrt{1-4A}}{2}>0$ et $\beta=\frac{1-\sqrt{1-4A}}{2}<0$.

$$Q = X^2 + X + A + 1 \text{ a deux racines } \beta < x_1 = \frac{-1 + \sqrt{-3 - 4A}}{2} \le 0 \text{ et } A \le x_2 = \frac{-1 - \sqrt{-3 - 4A}}{2} < \beta.$$

Comme $u_0=0$ et $[x_1,0]$ est un intervalle stable par $f\circ f$, $(u_{2n})_{n\in\mathbb{N}}$ décroissante, minorée, converge vers x_1 . Comme $u_1=A< x_2$ et $[A,x_2]$ est un intervalle stable par $f\circ f$, $(u_{2n+1})_{n\in\mathbb{N}}$ croissante, majorée, converge vers x_2 . Les deux suites extraites, d'indices pair et impair, ne convergent pas vers la même limite, donc $(u_n)_{n\in\mathbb{N}}$ diverge.



FIN